maximal left ideal造句
例句與造句
- regular maximal left ideal
正則極大左理想 - the first chapter, main instead " duo-ring " condition of " every maximal left ideal is gw-ideal " condition, study strongly regularities of gp-v-ring on this condition . lt is shown that ( 1 ) r is strongly regular iff r is left gp-v-ring whose maximal left ideals are gw-ideal . ( 2 ) r is strongly regular iff r is left gp-v-ring whose maximal right ideals are gw-ideal . the second chapter, generalize some results of gp-v-ring to gp-v-ring, discuss regularity of gp-v'- ring . it is shown that ( 1 ) r is left self-injective regular with non-zero socle iff r is left gp-v-ring with soc ( rr ) = soc ( rr ) and r contains an injective maximal left ideal
第一章主要將“duo-環(huán)”條件替換成“每一極大左(右)理想是gw-理想”條件,研究在此條件下,gp-v-環(huán)的強(qiáng)正則性,證明了:(1)r是強(qiáng)正則環(huán)當(dāng)且僅當(dāng)r是左gp-v-環(huán)且r的每一極大左理想是廣義弱理想;(2)r是強(qiáng)正則環(huán)當(dāng)且僅當(dāng)r是左gp-v-環(huán)且r的每一極大右理想是廣義弱理想,第二章,主要將gp-v-環(huán)上一些結(jié)果推廣到gp-v-環(huán)上,討論gp-v-環(huán)的正則性,證明了:(1)r是左自內(nèi)射正則環(huán)且soc(_rr)0當(dāng)且僅當(dāng)r是包含內(nèi)射極大左理想的gp-v-環(huán),且soc(_rr)=soc(r_r);(2)r是正則環(huán)且每一極大本質(zhì)左理想是理想當(dāng)且僅當(dāng)r是左gp-內(nèi)射的左gp-v-環(huán)且每一極大本質(zhì)左理想是理想。 - the first chapter, main instead " duo-ring " condition of " every maximal left ideal is gw-ideal " condition, study strongly regularities of gp-v-ring on this condition . lt is shown that ( 1 ) r is strongly regular iff r is left gp-v-ring whose maximal left ideals are gw-ideal . ( 2 ) r is strongly regular iff r is left gp-v-ring whose maximal right ideals are gw-ideal . the second chapter, generalize some results of gp-v-ring to gp-v-ring, discuss regularity of gp-v'- ring . it is shown that ( 1 ) r is left self-injective regular with non-zero socle iff r is left gp-v-ring with soc ( rr ) = soc ( rr ) and r contains an injective maximal left ideal
第一章主要將“duo-環(huán)”條件替換成“每一極大左(右)理想是gw-理想”條件,研究在此條件下,gp-v-環(huán)的強(qiáng)正則性,證明了:(1)r是強(qiáng)正則環(huán)當(dāng)且僅當(dāng)r是左gp-v-環(huán)且r的每一極大左理想是廣義弱理想;(2)r是強(qiáng)正則環(huán)當(dāng)且僅當(dāng)r是左gp-v-環(huán)且r的每一極大右理想是廣義弱理想,第二章,主要將gp-v-環(huán)上一些結(jié)果推廣到gp-v-環(huán)上,討論gp-v-環(huán)的正則性,證明了:(1)r是左自內(nèi)射正則環(huán)且soc(_rr)0當(dāng)且僅當(dāng)r是包含內(nèi)射極大左理想的gp-v-環(huán),且soc(_rr)=soc(r_r);(2)r是正則環(huán)且每一極大本質(zhì)左理想是理想當(dāng)且僅當(dāng)r是左gp-內(nèi)射的左gp-v-環(huán)且每一極大本質(zhì)左理想是理想。 - the first chapter, main instead " duo-ring " condition of " every maximal left ideal is gw-ideal " condition, study strongly regularities of gp-v-ring on this condition . lt is shown that ( 1 ) r is strongly regular iff r is left gp-v-ring whose maximal left ideals are gw-ideal . ( 2 ) r is strongly regular iff r is left gp-v-ring whose maximal right ideals are gw-ideal . the second chapter, generalize some results of gp-v-ring to gp-v-ring, discuss regularity of gp-v'- ring . it is shown that ( 1 ) r is left self-injective regular with non-zero socle iff r is left gp-v-ring with soc ( rr ) = soc ( rr ) and r contains an injective maximal left ideal
第一章主要將“duo-環(huán)”條件替換成“每一極大左(右)理想是gw-理想”條件,研究在此條件下,gp-v-環(huán)的強(qiáng)正則性,證明了:(1)r是強(qiáng)正則環(huán)當(dāng)且僅當(dāng)r是左gp-v-環(huán)且r的每一極大左理想是廣義弱理想;(2)r是強(qiáng)正則環(huán)當(dāng)且僅當(dāng)r是左gp-v-環(huán)且r的每一極大右理想是廣義弱理想,第二章,主要將gp-v-環(huán)上一些結(jié)果推廣到gp-v-環(huán)上,討論gp-v-環(huán)的正則性,證明了:(1)r是左自內(nèi)射正則環(huán)且soc(_rr)0當(dāng)且僅當(dāng)r是包含內(nèi)射極大左理想的gp-v-環(huán),且soc(_rr)=soc(r_r);(2)r是正則環(huán)且每一極大本質(zhì)左理想是理想當(dāng)且僅當(dāng)r是左gp-內(nèi)射的左gp-v-環(huán)且每一極大本質(zhì)左理想是理想。 - It's difficult to find maximal left ideal in a sentence. 用maximal left ideal造句挺難的